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Exploring the large chemical space in search
of thermodynamically stable and mechanically
robust MXenes via machine learning†

Jaejung Park, a Minseon Kim,b Heekyu Kim,a Jaejun Lee,a Inhyo Lee,b

Haesun Park,c Anna Lee, a Kyoungmin Min *b and Seungchul Lee*d

To effectively utilize MXenes, a family of two-dimensional materials, in various applications that include

thermoelectric devices, semiconductors, and transistors, their thermodynamic and mechanical properties,

which are closely related to their stability, must be understood. However, exploring the large chemical space

of MXenes and verifying their stability using first-principles calculations are computationally expensive and

inefficient. Therefore, this study proposes a machine learning (ML)-based high-throughput MXene screening

framework to identify thermodynamically stable MXenes and determine their mechanical properties.

A dataset of 23 857 MXenes with various compositions was used to validate this framework, and 48 MXenes

were predicted to be stable by ML models in terms of heat of formation and energy above the convex hull.

Among them, 45 MXenes were validated using density functional theory calculations, of which 23 MXenes,

including Ti2CClBr and Zr2NCl2, have not been previously known for their stability, confirming the

effectiveness of this framework. The in-plane stiffness, shear moduli, and Poisson’s ratio of the 45 MXenes

were observed to vary widely according to their constituent elements, ranging from 90.11 to 198.02 N m�1,

64.00 to 163.40 N m�1, and 0.19 to 0.58, respectively. MXenes with Group-4 transition metals and halogen

surface terminations were shown to be both thermodynamically stable and mechanically robust, highlighting

the importance of electronegativity difference between constituent elements. Structurally, a smaller volume

per atom and minimum bond length were determined to be preferable for obtaining mechanically robust

MXenes. The proposed framework, along with an analysis of these two properties of MXenes, demonstrates

immense potential for expediting the discovery of stable and robust MXenes.

1. Introduction

MXenes1 are a class of two-dimensional (2D) materials that
have attracted considerable attention because of their out-
standing physicochemical and electronic properties, and have
numerous potential applications as electrodes in rechargeable
batteries,2,3 catalysts in the hydrogen evolution reaction,4 and
thermoelectric devices.5,6 These materials are composed of
transition metal carbides, nitrides, and carbonitrides with the
general chemical formula of Mn+1XnTx, where M represents
the transition metal, X represents carbon and/or nitrogen,

T represents the surface termination, and n is typically 1, 2,
or 3. An advantage of MXenes that sets them apart from other
conventional 2D materials such as graphene is their large
chemical space,7 which allows the tuning of their properties
through the selection of different transition metals, surface
terminations, and layer thicknesses. Because the bonds
between M and X and those between M and T influence the
different properties of MXenes, such as their thermodynamic
and mechanical properties,8,9 MXenes can be customized
by altering such bonds to meet the specific requirements
of various applications. Moreover, this large chemical space
can be further expanded by considering non-stoichiometric
MXenes, which do not follow a general chemical formula.
For example, MXenes with two different surface termina-

tions Mnþ1XnT
0
x�yT

00
y

� �
, two types of transition metals

M
0
n�mþ1M

00
mXnTx

� �
, and distinct surface terminations and

transition metals M
0
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mXnT
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� �
exist. They have

been comprehensively studied as a new family in the field of
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MXenes;10–12 consequently, MXenes have become the most
extensive family of 2D materials.

As an efficient tool to explore the large family of MXenes,
a high-throughput computational screening (HTCS) method
based on first-principles calculations, such as density func-
tional theory (DFT)13–16 and molecular dynamic,17,18 is widely
employed. This method leverages the accuracy of first-principles
calculations in predicting the electronic structure, adsorption
properties, thermoelectric properties, and other relevant proper-
ties of MXenes to narrow down the number of candidates and,
consequently, identify a MXene that is the most suitable for a
particular application. For instance, Zeng et al.14 applied the
HTCS to 64 candidate MXenes to sequentially calculate their
thermodynamic properties, specifically the heat of formation
and hydrogen adsorption properties, using DFT. They identified
MXenes as suitable catalysts for the hydrogen evolution reaction.
Similarly, Guha et al.19 investigated MXene transistors with low-
resistive contacts and sequentially calculated electronic (such as
the bandgap and in-plane static dielectric constant), structural,
and thermodynamic properties using DFT. Other studies employ-
ing HTCS have successfully identified optimal MXenes by com-
puting various properties, including mechanical properties such
as in-plane stiffness,20 thermoelectric properties such as Seebeck
coefficients,21 and magnetic properties such as ferroelectricity.22

The ability to accurately identify and screen various properties of
MXenes using computational methods is crucial in HTCS, which
has made HTCS an invaluable method in MXene research.

Among the various properties of MXenes that are commonly
considered in HTCS studies, thermodynamic properties such
as heat of formation (DH) and energy above the convex hull
(DHhull), as well as mechanical properties such as in-plane
stiffness and shear modulus, are significantly important.9 First,
the thermodynamic properties serve as critical indicators for
predicting the thermodynamic stability of MXenes. MXenes
with DH o 0 eV per atom and 0 eV per atom r DHhull r
0.1 eV per atom can be considered to be thermodynamically
stable and these criteria have been widely used in previous
studies.23,24 Thermodynamically stable MXenes have a low
probability of decomposing or reacting with other substances,
making them desirable for practical applications. Moreover,
their higher likelihood of remaining stable during the syn-
thesis process enhances the feasibility of production. Second,
the mechanical properties are essential characteristics that
must be evaluated to utilize MXenes in practical applications,
such as energy storage and transistors. For examples, MXenes
have been extensively studied as electrode materials for
secondary batteries such as lithium- and aluminum-ion bat-
teries.2,3,13 In these applications, the mechanical properties of
MXenes play a crucial role in maintaining the structural
stability of the electrodes, enabling them to withstand the
deformation caused by volume expansion and contraction
during the charging and discharging processes.8,9,25 There-
fore, calculating the thermodynamic and mechanical proper-
ties of candidate MXenes using DFT in the HTCS can not only
gradually narrow down the number of candidate MXenes but
also ensure that the MXenes with the best performance for

specific applications are both thermodynamically stable and
mechanically robust.

Despite the remarkable practicality of HTCS, exploring the
vast chemical spaces of MXenes remains challenging. This
is because multiple DFT calculations, which are necessary
in HTCS to determine the thermodynamic and mechanical
properties, are computationally expensive and time consuming,
limiting the explorable chemical space of MXenes. Therefore,
several studies conducting HTCS have focused only on MXenes
with specific chemical formulas or have not considered a
sufficient variety of transition metals and surface terminations.
In particular, Zhan et al.15 conducted HTCS to assess the
potential of 72 MXenes as pseudocapacitors using the formula
Mn+1XnTx. However, their focus was primarily on iso-stoichio-
metric MXenes, with limited exploration of other families of
non-stoichiometric MXenes, such as those with two different
surface terminations. Furthermore, among the large variety of
surface terminations, O and OH have been predominantly
considered. Similarly, other HTCS studies have explored a
limited number of MXenes, focusing on a single family of MXene

with the chemical formulas of M
0
2M
00C2T2, M

0
2M

00
2C3T2,26 or

M
0
2M
00CNO2.14 In short, several studies utilizing HTCS have not

fully exploited the extensive chemical diversity of MXene families
and this limitation has been attributed to the high computational
costs of first-principles calculations.

Machine learning (ML) has been extensively used in many
studies to overcome the limitations of HTCS and explore a
broader chemical space.27–30 ML offers exceptional inference
speed and high prediction accuracy for various material proper-
ties, which can complement the computationally expensive
DFT calculations that are a bottleneck in the HTCS. By employ-
ing ML in the HTCS, DFT calculations are only required for the
materials that are predicted by ML as having the highest
performance in an application, thus significantly reducing
computational time and costs. Therefore, ML enables the fast
and efficient screening of materials with a large chemical
space. For example, Cai et al.28 used HTCS combined with
ML to identify promising cathode candidates for magnesium
and zinc batteries from 3880 spinel materials. They successfully
identified six spinel materials with remarkable electronic pro-
perties and reduced the screening time by approximately
72 years. In the field of 2D materials, Priya et al.29 employed
ML to screen 3814 2D materials in terms of the water desalina-
tion performance. They discovered several 2D materials, such
as FeO2, CuH2O2, and F2N2Ti3, that exhibited four times better
performance than that of graphene and MoS2. By incorporat-
ing ML into the HTCS, the exploration of materials can be
expanded from less than 100 candidates to over 3000, thereby
achieving efficient and effective identification of high-
performance materials for specific applications.

Inspired by the remarkable usefulness of ML in HTCS, this
study proposes a high-throughput MXene screening framework
that combines ML and DFT calculations to rapidly evaluate the
thermodynamic stability of various MXenes and to explore their
mechanical properties. By leveraging the advantages of ML, we
could consider 23 857 diverse MXenes as candidates, including
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iso-stoichiometric and various non-stoichiometric MXenes as
well as MXenes with several types of surface terminations,
extending beyond O and OH. Thus, this study could consider
significantly more MXenes in terms of their number and
diversity when compared to those considered in previous
studies. The proposed framework consists of two surrogate
ML models that can accurately predict DH and DHhull of
candidate MXenes, which aided in determining the thermo-
dynamic stability of the candidate MXenes. Subsequently, the
stability of the MXenes that were deemed to be thermodyna-
mically stable was re-verified using DFT calculations. Then,
the mechanical properties such as in-plane stiffness, shear
modulus, and Poisson’s ratio were determined using DFT
calculations. Thus, this framework aims to not only efficiently
and rapidly screen MXenes from extensive chemical spaces in
terms of their thermodynamic stability, but also evaluate their
mechanical robustness.

2. Methods

Fig. 1 shows an overview of this study. The proposed method
comprises three steps: data preparation, application of a high-
throughput MXene screening framework consisting of ML and
DFT screening, and a comprehensive analysis of the thermo-
dynamic, mechanical, and structural properties of MXenes.
In this section, the data used in this study, method of feature
extraction, ML techniques used for ML screening, and detailed
information about the DFT calculations are discussed.

2.1. Database and data processing

In this study, we employed the Computational 2D Materials
Database (C2DB)31 to train two surrogate ML models for pre-
dicting DH and DHhull. Chemical formulas and DH and DHhull

values for 15 733 2D materials were extracted from the C2DB.

We then represented each 2D material using 149 features derived
from their stoichiometries, employing matminer software32 for
feature generation. These features are designed to capture various
characteristics such as chemical compositions of 2D materials,
including the types and quantities of the constituent elements,
electronegativity difference between them, and number of valence
electrons in each orbital. Details of the 149 features used in this
work are summarized in ESI† (Sup. 1). These features have been
frequently employed when constructing ML models that were
used to predict the properties of other crystalline materials such
as voltages of electrode materials for metal-ion batteries33 and DH
of octahedral 2D materials34 and those models have shown out-
standing prediction performance as well; mean absolute error
(MAE) of 0.42 V and 0.099 eV per atom, respectively. Moreover,
these features can be readily obtained from just the chemical
formula without requiring additional DFT calculations, thereby
minimizing the time required to construct the training database.
This characteristic makes them especially suitable for a high-
throughput screening framework, where fast screening is one of
the advantages. Hence, they were used in this study.

Next, we utilized the aNANt database35 as the target data-
base with the aim to identify thermodynamically stable MXenes
and explore their mechanical properties using the frame-
work proposed in this study. The aNANt database contains
23 857 MXenes that represent four families of MXenes: iso-
stoichiometric MXenes and three types of non-stoichiometric
MXenes, including those with two different surface termina-
tions, two types of transition metals, and distinct surface
termination and transition metals (Fig. 2a). Moreover, the
MXenes in the aNANt database comprise a wide variety of
constituent elements: 11 types each of transition metals and
surface terminations (Fig. 2b). Hence, the aNANt database was
selected as the target database because it encompasses various
MXene families and the chemical space of its constituent

Fig. 1 Overview of this study.
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elements is considerably broad, allowing it to represent the vast
chemical space of MXenes.

Notably, the thermodynamic and mechanical properties of
all 23 857 MXenes in the aNANt database have not yet been
explored, and the database only provides the bandgaps of these
MXenes. We created 149 features for each of the 23 857 MXenes
using the same method that was used for the 2D materials in
C2DB. The 149 feature types were identical for both datasets
and the relationship between these two datasets (i.e., C2DB and
aNANt database) is further discussed in ESI† (Sup. 2).
By enabling the ML models to learn the relationship between
the thermodynamic properties and these 149 features using the
C2DB dataset, we could accurately predict the thermodynamic
properties of the 23 857 MXenes. Such approach of transferring

the knowledge that ML models learned from solving one
problem (i.e., predicting thermodynamic properties of 2D
materials in C2DB) to a related but different problem (i.e.,
predicting thermodynamic properties of MXenes in aNANt
database) is motivated by the transfer learning technique in
ML. Transfer learning is particularly useful when there is
abundant information about one problem but scarce informa-
tion about the other and has been frequently employed in the
field of materials science.29,36–39 Specifically, in the context of
2D materials, Priya et al.29 used similar method to identify 2D
materials suitable for water desalination. They trained ML
model on a dataset of 257 2D materials from three different
classes; namely, graphene derivatives, transition metal dichal-
cogenides, and nitrides. The trained ML model was then used

Fig. 2 (a) Examples of four representative types of MXenes within the aNANt database: iso-stoichometric MXenes and three non-stoichiometric
MXenes. (b) Types of transition metals (M), carbon/nitrogen (X), and surface terminations (T) represented on the periodic table. The table lists the number
of MXenes for each type.
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to predict the water desalination performance of different
classes of 2D materials having different structures or composi-
tions; to be specific, halide complexes, oxide complexes, and
lithiates (i.e., MnLi2, IrLi2, and MoLi2). Hence, inspired by these
studies, a similar approach was employed.

2.2. Machine learning algorithms

In the proposed high-throughput MXene screening framework,
two ML techniques, that is, regression and ensemble voting
classification, were used to screen MXenes regarding their DH
and DHhull. First, a regression technique was employed to
predict DH, and five ML models were constructed for evalua-
tion: random forest (RF), light gradient boosting machine
(LGBM), extra trees (ET), decision tree (DT), and k-nearest
neighbors (KNN) regressors. The performance of each model
was assessed using evaluation metrics such as R-squared (R2),
MAE, and root mean square error (RMSE). To ensure that the
trained ML models could accurately predict DH for unseen data
points, a five-fold cross-validation procedure was used during
the evaluation process. Detailed descriptions on the regression
models (i.e., RF, LGBM, ET, DT, and KNN) are presented in ESI†
(Sup. 3).

Then, for screening MXenes regarding to determine the
DHhull, ML ensemble voting classification was used. Initially,
we attempted to use regression methods (i.e., RF, LGBM, ET,
and CatBoost) to predict DHhull; however, the four ML regres-
sors that were designed for DHhull predictions did not perform
well. (The results obtained when using regression methods to
predict DHhull are presented in ESI† (Sup. 4).) While DH has a
direct relationship with constituent elements, making it closely
related to the features we used, DHhull is correlated to multiple
materials that are composed of the same constituent elements
but in different combinations. Owing to this complexity, accu-
rate prediction of DHhull using only composition-element-based
features is challenging. However, the main purpose of building
ML models was not to accurately predict the value of DHhull

itself, but rather to determine the thermodynamic stability
based on DHhull. Therefore, we designed an ML ensemble
voting classification to classify MXenes into two groups: those
with DHhull 4 0.1 eV per atom and those with 0 eV per atom r
DHhull r 0.1 eV per atom (the rationale for choosing 0.1 eV per
atom as a criterion for thermodynamic stability is described in
Section 3.1.2). In ensemble voting classification, the collective
knowledge of multiple classifiers is used to make informed
decisions. Three ML classifiers (RF, LGBM, and CatBoost) were
utilized for this method, where the assigned class for a given
data point was determined by consensus, specifically the class
agreed upon by at least two of the three classifiers. To validate
the performance of each classifier, five-fold cross-validation
was implemented, and the accuracy, area under the curve
(AUC), recall, and F1-score were used as the evaluation metrics.

2.3. Density functional theory calculations

DFT calculations were implemented to perform structural
relaxation and obtain the thermodynamic and mechanical
properties of MXenes. The Vienna Ab initio Simulation

Package (VASP) was used for the DFT calculations by applying
the Projector-Augmented-Wave (PAW) method for spin polariza-
tion.40,41 The generalized gradient approximation (GGA) of
Perdew–Burke–Ernzerhof (PBE) was selected as the exchange–
correlation functional.42 A plane-wave cutoff of 520 eV was
applied during the structural relaxation and thermodynamic
property calculations, whereas a larger cutoff of 800 eV was
used to determine the mechanical properties of the stable
MXenes. The lattice parameters and atomic coordinates were
optimized until the total energy difference between self-
consistent iterations fell below 10�6 eV per cell, and the atomic
force tolerance during the relaxation was set to 0.03 eV Å�1. The
k-points of 13 � 13 � 1 were used. Moreover, a substantial
vacuum space of 25 Å was implemented in the vertical direction
to prevent undesired interactions between repeated layers. The
elastic tensor of each MXene sample was obtained by calculat-
ing the second derivative of the total energy with respect to
the applied strain. Two finite difference steps and atomic
movements of 0.02 Å were used for the second-derivative
calculations.

DH of MXenes was computed by referencing the elemental
bulk or molecular structures obtained from the Materials
Project,43 which contains comprehensive information on over
150 000 inorganic materials. The phase diagram for each
MXene was also calculated using relevant compounds acquired
from the Materials Project and was constructed using the
Python Materials Genomics (pymatgen) code44 to determine
the DHhull of MXenes.45,46 Data from the Materials Project was
able to be utilized in calculating these two values because the
DFT calculation setting used for structural optimization in this
study were identical to those used in the Materials Project. The
DFT calculation settings were generated through the pymatgen’s
MPRelaxSet function. This function creates INCAR, KPOINTS, and
POTCAR files utilizing parameters used to construct the Materials
Project. Moreover, in the process of calculating thermodynamic
properties, the MaterialsProjectCompatibility function from
pymatgen was employed to ensure compatibility between DFT
calculation results of this study and the DFT energies of elements
and compounds in the Materials Project. Specifically, the function
verified the symbols in the POTCAR files used (e.g., PAW_PBE O
08Apr2002) and checked the run type of the DFT calculation (e.g.,
GGA). Thus, thanks to these processes, it was possible to utilize
information on over 150 000 inorganic materials from the Materi-
als Project for the calculation of thermodynamic properties.

The in-plane stiffness, shear modulus, and Poisson’s ratio
were computed from the elastic tensors of MXenes. The elastic
tensor (C) is a fourth-order tensor and the relationship between
the second-order stress (s) and strain (e) can be expressed with
the elastic tensor as follows:

sij = Cijklekl

Here, i, j, k, l represent Cartesian indices, which can take the
values x, y, and z. This equation can be rewritten in Voigt
notation under the transformation xx - 1, yy - 2, zz - 3,
yz - 4, xz - 5, xy - 6. Because MXenes are 2D materials,
components related to the Cartesian index of z can be
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disregarded, resulting in the following simplified equation.

s1

s2

s6

2
6664

3
7775 ¼

C11 C12 C16

C21 C22 C26

C61 C62 C66

2
6664

3
7775

e1

e2

2e6

2
6664

3
7775

The in-plane stiffness (E2D), shear modulus (G2D), and Poisson’s
ratio (v2D) of MXenes20 were derived from the above elastic
constants using the following equations:

E2D
x ¼

C11C22 � C12C21

C22
; E2D

y ¼
C11C22 � C12C21

C11
;

G2D
xy ¼ C66; v2Dxy ¼

C21

C22
; v2Dyx ¼

C12

C22

3. Results and discussion
3.1. Machine learning screening

3.1.1. Heat of formation. Heat of formation (DH) is a
crucial thermodynamic property that has been widely used as a
criterion to assess the thermodynamic stability of materials.14,47,48

As DH is the energy change associated with the formation of one
mole of a compound from its elemental constituents, DH o 0 eV
per atom implies that the energy is released during the formation,
indicating that the resulting compound is more stable than its
elemental constituents. Therefore, MXenes with DH o 0 eV per
atom must be identified within the 23 857 MXenes for further
analysis. To achieve this, we first trained the aforementioned five
regression models, namely RF, LGBM, ET, DT, and KNN, using
15 733 2D materials in C2DB, enabling the prediction of DH based
on 149 features for any given 2D material. We validated the
performance of these five ML regressors using five-fold cross-
validation and the ET regressor demonstrated the best results,
with an R2 of 0.943, MAE of 0.103 eV per atom, and RMSE of
0.164 eV per atom. The validation results for all five regressors and
the predictions made by the ET regressor for each data point are
shown in Fig. 3. The results evidently demonstrate that the trained
ET regressor can accurately predicts DH of 2D materials. Details
about ET regressor (e.g. hyperparameters) are summarized in ESI†
(Sup. 5).

Therefore, based on the ET regressor trained on 15 733 2D
materials in C2DB, we conducted DH predictions for the 23 857
MXenes. Consequently, we confirmed that 23 722 MXenes are
thermodynamically stable with DH o 0 eV per atom. Conversely,
135 MXenes failed to meet this condition and were excluded from
further analysis. This implies that approximately 99.5% of the
23 857 MXenes are likely to undergo an exothermic process upon
formation, indicating their stability when compared to that of the
constituent elements. Upon closer examination, all the excluded
135 MXenes were found to contain Cr, Mo, or W as a transition
metal. Moreover, approximately 90% had a molecular form such
as CN, SCN, or NCS, rather than as elements such as O, F, or Br for
surface termination. Hence, at this step, it was anticipated that
MXenes with these transition metals and surface terminations

would be unlikely to achieve thermodynamic stability, which was
later proven to be true in Section 3.2. Following this screening
step, we recognized the need for additional criteria to assess
thermodynamic stability for the following reasons. (1) DH is
insufficient for completely assessing thermodynamic stability
because it only considers the constituting elements and does not
account for other competing phases. (2) Although the purpose of
screening was to gradually narrow down the candidates to reduce
computational cost, it is difficult to say that sufficient screening
was carried out solely based on DH. Therefore, an additional
criterion must be considered to better screen MXenes for thermo-
dynamic stability, which is the energy above the convex hull.

3.1.2. Energy above the convex hull. The energy above the
convex hull (DHhull) quantifies the energy difference between
competing phases, indicating whether the current configu-
ration is stable or if a more favorable arrangement can be
achieved by combining the constituent elements differently.
As such, DHhull achieves more precise identification of thermo-
dynamically stable materials when compared to DH, and
has been widely used in various studies.49–51 DHhull = 0 eV per
atom indicates that the compound does not decompose into
competing phases and is considered stable. 0 eV per atom o
DHhull r 0.1 eV per atom indicates that the compound is

Fig. 3 Predictions of the trained extra trees (ET) regressor on DH of two-
dimensional (2D) materials within Computational 2D Materials Database.
Histograms at the top and right side represent the distributions of the measured
and predicted DH values by the ET regressor, respectively. The table presents
the performance of the five machine learning regressors that were tested in this
study, with the ET regressor showing the best performance.
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metastable, whereas DHhull 4 0.1 eV per atom implies
instability.52 In this study, we considered both stable and
metastable MXenes because several metastable compounds
have been successfully synthesized.49,52 Therefore, we set the
thermodynamic stability criterion as 0 eV per atom r DHhull r
0.1 eV per atom and this criterion has been widely used in
previous studies.23,24

To determine whether the DHhull values of the 23 722
MXenes with negative heat of formation meet the specified
criterion, ensemble voting classification was performed.
To train ML classifiers, the datasets from C2DB were first
divided into two classes: one with 0 eV per atom r DHhull r
0.1 eV per atom and the other with DHhull 4 0.1 eV per atom.
Three ML classifiers – RF, LGBM, and CatBoost classifiers –
were trained to accurately predict the class in which a 2D
material belongs based on the 149 features. We validated the
performance of these three ML classifiers using five-fold cross-
validation and the results are listed in Table 1. Notably, all
three classifiers demonstrated a high level of accuracy of over
80%, and their AUC values were close to 0.9, indicating superior
classification performance. Consequently, it was evident that by
utilizing the decisions made by these three classifiers, accurate
prediction of the range in which DHhull of a 2D material belongs
is possible. Specific information regarding the three classifiers
(e.g. hyperparameters) can be found in ESI† (Sup. 5).

Thus, based on the three classifiers trained with 15 733 2D
materials in the C2DB, we separated the 23 722 MXenes into
two classes according to DHhull where they were categorized
into the class agreed upon by at least two of the three classifiers
using majority voting. Consequently, 48 MXenes were predicted
to belong to the class with 0 eV per atom r DHhull r 0.1 eV per
atom, and the remaining 23 674 MXenes were excluded from
further analysis. Thus, only 0.2% of MXenes were predicted to
be stable or metastable based on DHhull, and the other MXenes
were expected to easily decompose into other competing
phases. Thus, we screened a total of 23 857 MXenes based on
DH and DHhull using two ML techniques, and confirmed that
only 48 MXenes were more thermodynamically stable than their
constituent elements and competing phases. Subsequently, these
48 MXenes were subjected to DFT screening to further validate
their thermodynamic stability.

3.2 Density functional theory screening

We performed DFT calculations on the 48 MXenes that were
predicted to be thermodynamically stable by the ML models,
obtaining their DH and DHhull for the following reasons. (1) The
exact value of DHhull was not predicted, so we could not

precisely determine whether each MXene is stable or meta-
stable. (2) We planned to upload the thermodynamic and
mechanical properties of MXenes obtained in this study to
large databases, such as C2DB, thereby contributing to future
studies on 2D materials; however, such databases only accept
values calculated using DFT. (3) ML models can accurately
predict the property values calculated using DFT; however, a
degree of error always exists due to discrepancies between
training and testing data. Our method of using both ML models
and DFT can be viewed as a tradeoff between accuracy and
computational cost.

The DFT calculation result showed that all 48 MXenes had
DH o 0 eV per atom and 45 MXenes had 0 eV per atom r
DHhull r 0.1 eV per atom, validating the accuracy of the ML
techniques used in this study. The three MXenes that failed to
satisfy the DHhull criterion were ScTaCCl2, Ti2NH2, and Ti2NO2.
They exhibited DHhull values of 0.18, 0.12, and 0.13 eV per atom,
respectively, indicating their thermodynamic instability and,
therefore, were excluded from further analysis. Among the 45
thermodynamically stable MXenes that were verified to satisfy
both criteria based on the DFT calculations, 22 MXenes such as
Y2CCl2, Hf2CF2, and Ti2NF2 were previously confirmed to
be thermodynamically stable using DFT calculations.31,53,54

Notably, of these 22 MXenes, 21 were iso-stoichiometric
MXenes, implying that previous studies were focused on iso-
stoichiometric MXenes. In contrast, the 23 new MXenes that
were identified in this study consisted of 18 iso-stoichiometric
and 5 non-stoichiometric MXenes with two distinct surface
terminations, namely Janus MXenes. Because various non-
stoichiometric MXenes were considered in this study, we could
identify these five new Janus MXenes to be thermodynamically
stable 2D materials. The DH and DHhull values of the five Janus
MXenes and three representative stable iso-stoichiometric
MXenes are listed in Table 2. The results of the remaining
15 thermodynamically stable MXenes are described separately
in ESI† (Sup. 6). To the best of our knowledge, the thermo-
dynamic and mechanical properties of these 23 MXenes have
not yet been calculated using DFT or tested experimentally.
This implies that (1) they could contribute to future studies on
thermodynamically stable 2D materials and (2) the high-
throughput MXene screening framework proposed in this study
demonstrated its potential in identifying new thermodynami-
cally stable MXenes.

To further validate the performance of the proposed frame-
work and examine the stability of the 45 thermodynamically
stable MXenes, two additional calculations were conducted.
Initially, 120 MXenes predicted as unstable through ML screening
were randomly selected, and their DHhull values were obtained
through DFT calculations. Remarkably, all 120 MXenes exhibited
DHhull values exceeding 0.1 eV per atom, indicating accurate
predictions by the proposed framework. Also, the average value
was remarkably high at 0.77 eV per atom, reflecting the scarcity of
stable MXenes within the considered chemical space; the distri-
bution of the DHhull values can be found in ESI† (Sup. 7).
Subsequently, phonon information at the G-point, obtained while
determining the mechanical properties of 45 thermodynamically

Table 1 Performance of the three classifiers used in ensemble voting
classification for classifying two-dimensional materials into two classes

Classifiers Accuracy AUC Recall F1 score

CatBoost 0.844 � 0.005 0.900 � 0.008 0.911 � 0.005 0.891 � 0.003
LGBM 0.841 � 0.005 0.901 � 0.007 0.917 � 0.005 0.889 � 0.004
RF 0.833 � 0.006 0.894 � 0.011 0.938 � 0.008 0.887 � 0.004
Average 0.839 0.898 0.922 0.889
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stable MXenes, were examined to further assess their stability.
All 45 MXenes had positive frequency values at the G-point,
indicating they are not only thermodynamically but also dynami-
cally stable. The frequency values at the G-point for the 23 MXenes
identified as stable for the first time in this study are presented in
ESI† (Sup.8) and Fig. S3. Furthermore, six out of the 23 MXenes
were selected for additional phonon calculations that were based
on the finite difference method. Both VASP and PHONOPY55 were
utilized to obtain phonon band structures that can visualize
phonon dispersions across high symmetry lines. All six MXenes
exhibited positive frequency values across all high symmetry
points, reaffirming their dynamic stability, and the frequency
values at the G-points were consistent with those in Fig. S3 (ESI†).
The phonon band structures of the six MXenes are presented in
ESI† (Sup.8) and Fig. S4. In conclusion, the results summarized
above indicate that the framework successfully identified stable
MXenes in the extensive chemical space whose stability was
verified thoroughly with both DFT and phonon calculations.
Yet, as mentioned earlier, there remains the possibility of finding
MXenes that are thermodynamically stable but were predicted as
unstable due to the inherent limitations of ML. Therefore, devel-
oping ML methods with accuracy and robustness comparable to
DFT is also suggested as one direction of future work.

The frequency of each element constituting the 45 stable
MXenes is shown in Fig. 4a and the results can be discussed
from three perspectives. First, MXenes with transition metals
belonging to Groups 3 (Sc, Y) and 4 (Ti, Zr, Hf) comprise the
majority of the 45 thermodynamically stable MXenes, with
MXenes containing Ti being the most abundant (24%). This
result is in strong agreement with those of previous studies. For
instance, Li et al. had summarized all 37 MXenes that were
successfully synthesized in previous research; among them,
12 were MXenes with Ti, which is more than the number of
MXenes with other transition metals.8 This indicates a correla-
tion between the findings of this study and actual synthesis
results. Second, most of the 45 thermodynamically stable
MXenes had carbon atoms at the X site (64%). Similarly, of
the 37 synthesized MXenes, 31 exhibited carbon at the X site.8

The similarity between the two results demonstrates the effec-
tiveness of the proposed high-throughput MXene screening
framework. Finally, the surface terminations of the 45 thermo-
dynamically stable MXenes predominantly comprised Group-17
elements, including F, Cl, and Br (89%). Although only a few
experimental research studies on MXenes with F, Cl, and Br
as surface terminations have been published, the presence of

halogen elements as surface terminations can theoretically
maximize the electronegativity difference between the surface
termination and the transition metal.56 Such an increase in
the electronegativity difference allows for stronger interactions
between them, consequently enhancing the stability of
MXenes. The importance of the electronegativity difference in
relation to thermodynamic stability is reaffirmed in Section
3.3.1. In summary, the 45 MXenes validated for thermodynamic
stability through DFT calculations exhibited a similar trend in
chemical composition as that of the experimentally synthesized
MXenes. Furthermore, their stability can be theoretically
explained. Therefore, we propose the 45 thermodynamically
stable MXenes that were identified in this study as highly
promising candidates for synthesis.

Conversely, aside from these 45 stable MXenes, the rest
which comprise majority within the chemical space explored
in this study were predicted as thermodynamically unstable
and thus were excluded as the result of ML screening. Such
result can also be explained by comparing the chemical space
of the MXenes explored in this study and MXenes that have
been successfully synthesized. First, from the perspective of
constituent elements, according to Anasori et al.,57 who sum-
marized the constituent elements of MXenes that have been
successfully synthesized so far, the transition metals consid-
ered in this study were mostly those found in successfully
synthesized MXenes, except for Sc. However, the synthesized
MXenes predominantly had surface terminations of O, OH, F,
or Cl while MXenes with other surface terminations are rarely
synthesized. Although the chemical space considered in this
study did include these four surface terminations, 21 878 MXenes
contained at least one surface termination other than these four.
In other words, the majority, excluding 1979 MXenes, had surface
terminations that are not commonly found in successfully synthe-
sized cases. Second, regarding the types (i.e., stoichiometries) of
MXenes considered, it was observed that: (i) Janus MXenes and
MXenes with distinct surface terminations and transition metals
have not yet been successful synthesized due to the difficulty of
composing the bottom and top surfaces of MXenes with different
elements or groups.11,58,59 (ii) For hybrid transition metal MXenes,
although there are several cases of successful synthesis,60–62 most
utilized mixed surface terminations, not considering the single
element type of surface termination (i.e., uniform surface termi-
nation) used in the aNANt database. (iii) Iso-stoichiometric
MXenes terminated with a uniform surface termination have
been increasingly synthesized recently; synthesized materials

Table 2 DH and DHhull of 8 representative MXenes among 23 MXenes identified to be thermodynamically stable for the first time in this study

MXene DH (eV per atom) DHhull (eV per atom) MXene type Thermodynamic stability Dynamic stability

Hf2CClBr �1.46 0.00 Janus Stable Stable
Ti2CClBr �1.34 0.00 Janus Stable Stable
Ti2NClBr �1.69 0.00 Janus Stable Stable
Ti2NOH �1.88 0.10 Janus Metastable Stable
Zr2CClBr �1.48 0.00 Janus Stable Stable
Y2NBr2 �1.81 0.00 Iso-stoichiometric Stable Stable
Ti2CBr2 �1.09 0.00 Iso-stoichiometric Stable Stable
Zr2NCl2 �2.00 0.00 Iso-stoichiometric Stable Stable
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include Nb2CCl2, Nb2CS2, Ti3C2Cl2, Ti2CCl2, and Ti3C2I2.8,63–65

Upon comparison, it was found that some, such as Nb2CCl2

and Ti2CCl2, were successfully identified as thermodynamically
stable by the proposed framework and, to the best of our
knowledge, none of the MXenes predicted to be unstable have
been successfully synthesized. Therefore, the fact that only 45
of the 23 857 MXenes were deemed stable can be attributed to
the small subset of these 23 857 MXenes possessing similar
constituent elements and stoichiometries to those that were
successfully synthesized. The rationale for exploring the
chemical space of MXenes in aNANt database despite the
differences between them and synthesized MXenes is summar-
ized in ESI† (Sup. 9).

The mechanical properties of the 45 MXenes whose thermo-
dynamic stabilities were validated were calculated using addi-
tional DFT calculations. Two MXenes with negative elastic
constants were excluded from further consideration; thus, the
elastic tensors of the remaining 43 MXenes were obtained.
By utilizing these values, the x-direction in-plane stiffness (E2D

x ),
y-direction in-plane stiffness (E2D

y ), shear moduli (G2D
xy ), and

Poisson’s ratio (v2D
xy ) were obtained, as illustrated in Fig. 4b and

c. The E2D
x and E2D

y values of the MXenes were nearly identical,
demonstrating their isotropic elastic nature, as previously
reported.20 The in-plane stiffness (E2D) of MXenes ranged from
90.11 to 198.02 N m�1, with Hf2CH2 MXene exhibiting the
highest E2D

y . Despite their asymmetric structures, the Janus

Fig. 4 (a) Number of thermodynamically stable MXenes according to each chemical composition; (b) E2D
x and E2D

y of the 43 thermodynamically stable
MXenes; (c) relationship between E2D

x and G2D
xy , as well as v2D

xy ; (d) average of E2D
x for each chemical composition.
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MXenes (Ti2NOH, Ti2CClBr, Ti2NClBr, Hf2CClBr, and Zr2CClBr)
and MXenes with two types of transition metals, namely
the hybrid transition metal MXene (TiTaCCl2), showed high
in-plane stiffness. Specifically, the Janus MXenes exhibited
E2D

x values of 184.24, 178.55, 159.54, 151.46, and 140.60 N m�1,
respectively, which were higher than the average E2D

x value of
139.03 N m�1 of the remaining 37 iso-stoichiometric MXenes.
Similarly, TiTaCCl2, a hybrid transition metal MXene, exhibited
a high E2D

x of 172.97 N m�1. MoS2, a widely known 2D material
with E2D of 120 N m�1, has been studied for its application
in elastic energy storage owing to its high strength and
flexibility.66 Among the 43 stable MXenes, 33 exhibited a higher
E2D than MoS2, suggesting their potential for elastic energy
storage, especially when their flexibility, such as ultimate
tensile strain, is further investigated in future studies. More-
over, Fig. 4c shows that MXenes with high E2D also tend to
exhibit high E2D

xy . E2D
xy of the stable MXenes ranged from 64.00 to

163.40 N m�1, whereas v2D
xy , indicated by the color of the points

in Fig. 4c, ranged from 0.19 to 0.58. The wide range of the
mechanical properties indicates that the mechanical properties
of MXenes can vary extensively based on their chemical com-
position. E2D

x , E2D
y , E2D

xy , and v2D
xy for all 43 MXenes are summar-

ized in ESI† (Sup. 10).
After observing the effect of the chemical composition of

MXene on its mechanical properties, we calculated the average
E2D for each transition metal, X-site atom, and surface termina-
tion type. The results are shown in Fig. 4d and they are
compared with those of a previous study that theoretically
analyzed the mechanical properties of MXenes. Theoretically,
E2D of MXenes is closely related to the bonding between the
transition metal and the X-site atom and surface termination.
The strength of these bonds can be determined based on the
bond stiffness, which is derived from the bond energy and
bond length. Wyatt et al.9 calculated the bond stiffness between
transition metals and carbon or nitrogen in MXenes and
determined that titanium exhibited higher bond stiffness with
carbon and nitrogen than with other transition metals. They
also compared the bond energy between the transition metal
and surface termination and observed that the bonds between
the transition metals from Group 4 (Ti, Zr, and Hf) and halogen
surface terminations (F and Cl) had the highest bond energy.
This trend is attributed to the large electronegativity difference
between them.9

Our study obtained results that align with the afore-
mentioned theoretical analysis. As shown in Fig. 4d, MXenes
with transition metals from Group 4 (Ti, Zr, and Hf) exhibit a
higher average E2D

x than MXenes with other transition metals.
Among them, MXenes with titanium exhibited the highest
average E2D

x of 166.34 N m�1, which is consistent with the
theoretical analysis presented in a previous study.9 Notably,
among the 43 MXenes calculated for mechanical properties,
38 had halogen surface terminations, which contributed to the
higher average E2D of MXenes with transition metals from
Group 4, as mentioned by Wyatt et al.9 This suggests that the
large electronegativity difference between the surface termina-
tion and transition metal plays a role in enhancing E2D of

MXenes. Although MXenes with hydrogen surface termination
showed a higher average E2D of 175.63 N m�1 when compared
to that of MXenes with halogen surface terminations (F, Cl, Br),
which exhibit average E2D values of 131.04, 137.00, and
141.74 N m�1, respectively, it is important to consider that
there were only five MXenes with hydrogen surface termina-
tions in our study. Moreover, research on the mechanical
properties of MXenes with hydrogen surface terminations is
lacking. Therefore, further investigations such as obtaining
uniaxial tensile stress and strain curves using DFT calculations
are required to understand their mechanical properties.
In summary, the mechanical properties of the 43 MXenes
calculated in this study were consistent with the theoretically
analyzed results of a previous study, highlighting the signifi-
cant influence of the chemical composition of an MXene on
its mechanical properties. To create MXenes with superior
mechanical properties, especially E2D, the following three key
approaches can be considered: (1) using transition metals from
Group 4, particularly titanium, (2) using halogen elements for
surface termination, and (3) considering MXenes with asym-
metric structures, such as Janus or hybrid transition metal
MXenes. Based on the results of this study, we inferred that by
designing the chemical composition of MXenes accordingly,
thermodynamically stable and mechanically robust MXenes
can be obtained.

3.3. Comprehensive analysis

3.3.1. Thermodynamic stability of two-dimensional mate-
rials and MXenes. In the proposed high-throughput MXene
screening framework, we utilized the ET regressor that was
trained with 2D materials in C2DB to predict DH of MXenes.
To identify the features that have a significant impact on
predicting DH and to analyze their relationship with DH, we
utilized a method known as Shapley Additive Explanations
(SHAP).67 Unlike traditional feature importance methods, such
as permutation importance, which focus on single-feature
effects, SHAP considers both the main and interaction effects
between features, providing a more accurate and consistent
attribution of importance. Therefore, this method has been
widely applied in multiple materials science studies, revealing
various correlations between the material properties.68,69

Fig. 5a and b illustrate the most influential features for
predictions made by the ET regressor, trained with 2D materials
in C2DB, on the training dataset (i.e., 2D materials in C2DB) and
the test dataset (i.e., MXenes in the aNANt database), respectively.
We highlighted the top-five features in terms of importance, and
four of these features are identical in the case of both 2D materials
and MXenes. In particular, the electronegativity of constituent
elements, total number of unfilled states, and ionic character
between the elements were identified as key factors for predicting
DH. Regarding the electronegativity-related features, the mean
absolute deviation and range of electronegativity values of con-
stituent elements exhibited significant feature importance. As the
range and mean absolute deviation are both statistical measures
that are closely related to the differences among the values, and
the ionic character is also associated with the differences in
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electronegativity between constituent elements, it can be inferred
that DH of 2D materials and MXenes is significantly influenced by
the differences in the electronegativity values of their compo-
nents. A previous study also showed that, in the case of MXenes, if
the difference in electronegativity between the transition metal
and the surface termination is small, the interaction between
the two elements weakens, making it unstable.56 Hence, larger
differences in electronegativity between the constituent elements
of MXenes can lead to more stable structures. The SHAP results
also illustrate such relationship. Both the mean absolute deviation
and range of constituent elements’ electronegativities are inver-
sely related to DH, meaning that as their values increase, DH
decreases. As a lower DH indicates higher thermodynamic stabi-
lity, our study reaffirms that 2D materials and MXenes with larger
values related to the differences in the electronegativity of con-
stituent elements are more likely to be thermodynamically stable,
a useful insight for designing new thermodynamically stable 2D
materials.

3.3.2. Mechanical properties of MXenes. We investigated
the relationship between the mechanical (specifically, E2D

x and
G2D

xy ) and structural properties of the 43 MXenes. We considered
the volume per atom (VPA), minimum bond length, and thick-
ness as the structural properties, which were obtained from
MXene structures that were relaxed using DFT calculations.
These properties have been widely used to understand the
relationship between the structure and mechanical properties
of ultrahigh-modulus crystals and inorganic compounds.70,71

The thickness of an MXene was determined by adding the
vertical distance between the topmost and bottommost atoms
to the sum of their van der Waals radii. Subsequently, we used
this thickness to calculate the VPA by multiplying it with the
cross-sectional area of a unit cell. Finally, the minimum bond
length is defined as the smallest distance between the atomic
nuclei of the atoms composing MXene. Given that v2D

xy of the

43 MXenes ranged broadly from 0.19 to 0.58, we first parti-
tioned the MXenes into two categories based on the mid-range
value of 0.38. A total of 36 MXenes fell within this mid-range,
whereas 7 MXenes exceeded it.

We then analyzed the correlation between the mechanical
properties of the MXenes with v2D

xy less than 0.38 and the
aforementioned three structural properties, yielding remark-
able results in terms of the Pearson correlation coefficient
(PCC) and Spearman rank correlation coefficient (SRCC).
As shown in Fig. 6, E2D

x exhibits inverse correlation with VPA
(PCC = �0.609, SRCC = �0.615) and minimum bond length
(PCC = �0.691, SRCC = �0.694); however, its relationship with
MXene thickness (PCC = �0.427, SRCC = �0.474) is not
apparent when compared to that of the other two structural
properties. Similarly, G2D

xy also exhibited a highly negative
relationship with VPA (PCC = �0.608, SRCC = �0.600) and
minimum bond length (PCC = �0.660, SRCC = �0.639), but not
with MXene thickness (PCC = �0.450, SRCC = �0.474). Speci-
fically, VPA demonstrated an inverse relationship with both
E2D

x and G2D
xy . A smaller VPA indicates that the atoms in the

material are tightly bound, resulting in a stronger bond
strength. Because a stronger bond strength within molecules
yields stronger resistance against deformation, it is theoretically
valid that smaller VPA values correspond to better mechanical
properties, as supported by previous studies on the mechanical
properties of bulk materials and MXenes.20,70 The minimum
bond length also exhibited a similar relationship. Usually, a
shorter bond length implies a greater bond stiffness, which in
turn indicates a higher resistance to deformation.72 Hence,
smaller bond lengths lead to better mechanical properties; such
a relationship has also been shown in a computational study of
representative 2D materials.73

Conversely, the MXene thickness, whose correlation analysis
results are shown in Fig. 6e and f, did not exhibit a clear
relationship with the mechanical properties, as it appears to be
scattered and exhibits lower PCC and SRCC values than those
of the other two structural properties. Through this correlation
analysis, we discovered that thermodynamically stable MXenes
with v2D

xy less than 0.38, which indicates a relatively lower
compressibility, exhibit an inverse association between their
mechanical properties and the VPA and minimum bond length.
Thus, smaller VPA values and shorter minimum bond lengths
are conducive to achieving higher E2D

x and G2D
xy . This under-

standing can be used to quickly identify mechanically robust
MXenes in the future by focusing on MXenes with such
structural characteristics for mechanical property calculations
using DFT.

4. Conclusion

In this work, we developed two surrogate ML models for
predicting DH and DHhull, by leveraging the existing big data
on 2D materials, namely C2DB. Using these models with high
prediction accuracies (DH: R2 = 0.973, MAE = 0.102 eV per atom;
DHhull: average accuracy = 0.839, average AUC = 0.898), we could

Fig. 5 Five important features for predicting DH of (a) 2D materials in
C2DB and (b) MXenes in aNANt database that were identified using Shapley
Additive Explanations.
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expeditiously screen 23 857 MXene to identify 48 MXenes that were
predicted to be stable in terms of the DH and DHhull criteria. Among
them, 45 MXenes were verified to be stable using DFT calculations,
and their mechanical properties, such as E2D, G2D

xy , and v2D
xy were

obtained. Based on the above results and a comprehensive analysis
of the thermodynamic and mechanical properties of MXenes, the
major contributions of this study and corresponding future
research directions can be summarized as follows:
� This framework demonstrates significant potential to be

used in screening more diverse MXenes, such as high-entropy
MXenes, MXenes with more than one layer of carbon or

nitrogen (Mn+1XnTx; n 4 1), and MXenes with late transition
metals (Fe, Co, and Ni), which were not investigated in this
work. Furthermore, the proposed framework demonstrates
notable expandability, allowing it to be adjusted or expanded
to suit practical applications. Through simple modifications,
it is possible to expeditiously and easily identify MXenes that
are thermodynamically stable and simultaneously possess
properties suitable for practical applications, with detailed
methods for these modifications presented in ESI† (Sup. 11).
� The 23 MXenes that were identified as stable for the first

time in this study exhibited a similar chemical composition

Fig. 6 Correlation between volume per atom and mechanical properties: (a) E2D
x and (b) G2D

xy ; correlation between minimum bond length and
mechanical properties: (c) E2D

x and (d) G2D
xy ; correlation between MXene thickness and mechanical properties: (e) E2D

x and (f) G2D
xy . Red lines are linearly

fitted lines, while red areas correspond to the confidence interval band.
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trend to the experimentally synthesized MXenes, and their
stability could be theoretically explained. Also, MXenes with
halogen surface terminations have recently been studied as
cathodes for Zinc ion batteries (ZIB).74 Therefore, we propose
that these MXenes are highly promising candidates for syn-
thesis and their potential as cathodes for ZIB should be
explored by obtaining their electrochemical properties through
DFT calculations.
� Through both compositional analysis and SHAP, the

importance of the electronegativity difference between the
constituent elements of MXene on the thermodynamic stability
was highlighted. Maximizing the electronegativity difference
between the transition metals and surface terminations is the
key to designing stable MXenes.
� The following three approaches for designing MXenes with

high E2D and G2D
xy were identified:

(1) Using transition metals from Group 4, especially Ti.
(2) Using surface terminations that have high bond energies

with selected transition metals (halogen surface terminations
for Group-4 transition metals).

(3) Minimizing VPA and minimum bond length of MXenes.
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