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framework consisting of a surrogate model and utility function
for expeditious identification of thermodynamically stable
MXenes in the extensive chemical space of 23,857 MXenes with compositional and stoichiometric diversity. Exploiting the
fast inference speed and the capability of the AL framework to accurately identify stable MXenes, only 480 DFT calculations
were required to identify 126 thermodynamically stable MXenes; among these, the stabilities of 89 MXenes have not been
previously reported. In contrast, only two stable MXenes were identified among randomly selected 1693 MXenes,
demonstrating the inefficiency of using only DFT calculations in exploring a large chemical space. The AL framework
successfully minimized the number of DFT calculations while maximizing that of thermodynamically stable MXenes identified

and can contribute to future studies in finding stable MXenes expeditiously.
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MXenes' stand as a captivating domain in the field of two-
dimensional (2D) materials, primarily owing to their composi-

tional tunability. This feature has catalyzed their applications in
6-8

)

energy storage,“ electrocatalysis,‘"5 and water purification,
all of which are underpinned by their superior chemical,
electronic, and adsorption properties. Comprising transition
metal carbides, nitrides, and carbonitrides, MXenes are
typically represented by the general formula M, X, T,. Here,
M, X, and T indicate transition metals, carbon and/or
nitrogen, and surface terminations, respectively. Additionally,
n denotes the number of carbon or nitrogen layers present in
the MXene, and x represents the number of surface
terminations attached to it. MXenes are distinct from
conventional 2D materials in that they possess an extensive
chemical space, which is attributed to their diverse
combination of constituent elements (i.e, compositional
tunability) and the presence of varied nonstoichiometric
MXenes. Consequently, because of their compositional and
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stoichiometric flexibilities, MXenes are known to be the family
of 2D materials with the largest chemical space.”

The large chemical space of MXenes, however, limits their
comprehensive experimental exploration for various applica-
tions. To address this, high-throughput computational
simulations that are represented by first-principles calculations
like density functional theory (DFT) calculations, help guide
experimental efforts by pinpointing optimal MXenes with
targeted properties."’”'* In line with this effort, numerous
studies on MXenes have been conducted using DFT to predict
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their electronic,"’ thermodynamic,'* and mechanical proper-
ties."

Among the various materials properties that can be explored
through first-principles calculations, thermodynamic stability,
particularly phase stability, quantified by the energy above the
convex hull (E™"), should be evaluated as a preliminary step to
facilitate the further application of MXenes. E™! is the energy
difference between the formation energy of the unknown
structure and the lowest formation energy configurations
represented by the vertices of the convex hull in a phase
diagram. When EM s zero, the compound is deemed stable
against decomposition into competing phases. Positive EMl
values suggest potential metastable compounds, with smaller
E™! values often indicating the synthesizability of unknown
structures. Therefore, in research focused on iodine-terminated
MXenes with high synthesizability,’* MXene semiconduc-
tors,"> MXenes for energy storage materials,'® and many
others,'”” ™" their stabilities were first assessed with DFT
before proceeding to determine other relevant properties such
as band gap and lithium storage capacities. Thus, E™! is of
paramount importance for MXene synthesis and applications.

Despite the tremendous utility of first-principles calculations,
they remain limited when exploring the extensive chemical
space of MXenes. This limitation stems from the fact that DFT
calculations are computationally expensive and require large
amounts of computational resources to thoroughly explore the
chemical space of MXenes. Hence, previous studies examined
only a limited portion of the extensive chemical space of
MZXenes in terms of both composition and stoichiometry,
focusing only on MXenes with O surface termination,” Ti or V
in M site,”” and fixed chemical formula of MjM"C,T,.”"

To overcome the massive computational demand of first-
principles approaches, recent researches in fields of materials
screening and cheminformatics have been actively applying
artificial intelligence (AlI), utilizing various approaches like
machine learning (ML), artificial neural networks, and
transformers in predicting materials properties that include
thermodynamic, electric, and chemical properties.””** Specif-
ically, many studies have applied ML to assess the
thermodynamic stability of MXenes, successfully identifying
stable MXenes by predicting their thermodynamic properties.
For instance, Park et al.*’ used ML regression and voting
methods to analyze thermodynamic properties and identified
4S thermodynamically stable MXenes. Similarly, Vertina et
al.** developed a regressor using an ML model to predict the
thermodynamic properties of MXenes and He and Zhang’'
utilized a support vector machine (a type of ML) to classify the
stability of MXenes.

Yet, these ML-based studies on the thermodynamic stability
of MXenes face two challenges when exploring the large
chemical space of MXenes.

(1) ML encounters difficulties with exploration due to its
lack of consideration for uncertainty in predictions.

Since the ML model predicts thermodynamic properties
(e.g, E™) based on those of the stable/unstable MXenes in
the training data, the uncertainty for predictions of MXenes
that have different compositions or stoichiometries compared
to those in the training data would be very high. Due to this
high uncertainty, these MXenes are worth investigating rather
than relying solely on ML. However, if only ML is used, these
MXenes might be discarded based on highly uncertain results.
In other words, ML methods tend to find MXenes similar to

the stable ones in the training data, potentially overlooking
stable MXenes with compositions and stoichiometries that
were not present in the training data. This issue can be
especially problematic when the training database contains a
very small number of MXenes, such as the 85 MXenes used in
the previous study.’'

(2) ML does not inherently operate iteratively; it is a one-
time process.

In studies utilizing ML, additional data is inevitably
generated as the properties of materials selected by ML are
verified using computational methods. By retraining ML
models with this data and subsequently making predictions
on the remaining materials, there is potential to discover
additional materials with desired properties. Also, iteratively
performing computations and retraining can further enhance
the discovery. However, many ML-based studies do not
employ this iterative retraining approach and in particular, in
the previous work,”” even though the E™ values of 45 MXenes
were additionally obtained through DFT calculations, they
were not used to retrain ML.

To utilize uncertainties in ML predictions and to fully
exploit additionally obtained data for a more thorough
exploration of extensive chemical space, active learning (AL)
has recently been employed in various studies. AL consists of
two essential components: a surrogate model and utility
function. The surrogate model serves as a substitute for
experiments or first-principles calculations, enabling rapid
prediction of material properties and, importantly, quantifying
the uncertainty of each prediction. Next, the utility function
accurately selects materials with a high probability of
possessing desired properties based on predictions of the
surrogate model and uncertainties of such predictions, making
possible to investigate materials with feature values different
from the training data. The actual material properties of the
selected materials are then obtained through experiments or
first-principles calculations. This data is further utilized to
retrain the surrogate model, iteratively repeating the process of
prediction—material selection—verification. Leveraging these
features, AL has been applied to explore chemical spaces of
ferroelectric perovskites,32 thermoelectric materials,” solid-
state electrolytes,”® and iridium oxide polymorphs™ and
successfully identified desirable materials with comparably
lower computational costs or less number of experiments.

Encouraged by the recent advances of AL in materials
science, this study proposes an AL framework that consists of
an ML surrogate model, a utility function, and DFT
calculations to expedite the identification of thermodynami-
cally stable MXenes with 0.00 eV/atom < E™! < 0.05 eV/
atom in the extensive chemical space. With the fast inference
speed of the surrogate model and the judicious MXene
selection by the utility function, compositionally and stoichio-
metrically diverse 23,857 MXenes were studied as the targeted
chemical space to explore. Compositionally, 11 transition
metals and 14 types of surface terminations were considered.
Stoichiometrically, not only iso-stoichiometric but also varied
nonstoichiometric MXenes were included. Thus, this study
leveraged the advantages of AL to consider a more diverse and
numerically larger set of MXenes compared with those
reported in previous studies, minimizing the number of DFT
calculations and maximizing the number of stable MXenes
identified. The demonstrated utility and efficiency of the AL
framework are expected to assist subsequent research in

https://doi.org/10.1021/acsnano.4c08621
ACS Nano XXXX, XXX, XXX—XXX


www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.4c08621?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Nano

Www.acsnano.org

T

.:M

25
Mn
43
Tc
71 75}
Lu Re

103 104 105 106 107
Lr Rf Db Sg Bh

4
Be

12

o

=z
O

©

20
Ca

38
Rb Sr

55
Cs

87
Fr

26
Fe

44
Ru

76
Os

108
Hs

P

56
Ba

88
Ra

OH CN

oC

1

M,XT1T2

2
He
. 5 6 7 8 9 10
T B ¢ N © F Ne
13 14, 15 16 17 18
Al Si P S ClI Ar
27 28 29 30 31 32 33 34 35 36
Co Ni Cu Zn Ga Ge As Se Br Kr
45 46 47 48 49 50 51 52 53 54
Rh Pd Ag Cd In Sn Sb Te | Xe
77 78 79 80 81 82, 83 84 85 86
Ir Pt Au Hg Tl Pb Bi Po At Rn
109 110 111 112 113 114 115 116 117 118
Mt Ds Rg Ch Nh FI Mc Lv Ts Og
SCN NCS OCN NP RO OBr

M'M2XT,

MTM2XT1T2

Figure 1. (a) Constituents of 23,857 MXenes represented on the periodic table (b) four different stoichiometries composing 23,857 MXenes.

identifying thermodynamically stable MXenes through ML and
first-principles calculations.

RESULTS AND DISCUSSION

MXenes Structures and Chemical Space. In order to
demonstrate the ability of the proposed AL framework to
effectively and efficiently identify thermodynamically stable
MZXenes within an extensive chemical sgpace, the MXene
database provided by the aNANt group”™ was used as the
target data set (i.e., target chemical space). The aNANt MXene
database contains a compositionally and stoichiometrically
diverse set of 23,857 MXenes. Compositionally, 11 different
transition metals as well as 14 types of surface terminations
were considered as the constituents of MXenes (Figure la).
Stoichiometrically, not only iso-stoichiometric MXenes
(M,XT,) but also three nonstoichiometric MXenes, namely,
MXenes with two different transition metals (M!M?XT,), two
types of surface terminations (M,XT'T?), and distinct
transition metals and surface terminations (M'M>XT!T?)
were included (Figure 1b). Importantly, the thermodynamic
properties (i.e, E™) of the 23,857 MXenes provided by the
aNANt group remain unexplored. Therefore, the aNANt
MXene database was used as the target data set since it offers a
comprehensive representation of the extensive chemical space
of MXene.

Featurization. For the featurization of MXenes in the
aNANt database, the chemical formulas of 23,857 MXenes
were first extracted. Each MXene was then represented with
149 features, which were derived from its chemical formula
using the matminer software.”” These features represent varied

characteristics from the chemical compositions of MXenes,
including the ionic character between two constituent
elements, average atomic radius of the constituent elements,
and total number of valence electrons. The specifics of the 149
features utilized in this study can be found in the Supporting
Information (SL1).

Two additional preprocessing steps were performed after the
featurization: (i) dimensionality reduction using principal
component analysis (PCA) and (ii) one-hot encoding for
the constituents of MXenes. Through PCA, the feature
dimensions were reduced from 149 to 1S. Subsequently,
one-hot encoding was applied to represent 11 transition
metals, 14 surface terminations, and two X site atoms, adding
27 dimensions to the previously reduced 15 dimensions by
assigning the value of “1” to the features corresponding to the
constituents (i.e., transition metals, surface terminations, and X
site atoms) present in a MXene and a “0” to those that are
absent. After completing the featurization process, each MXene
was characterized by 42 features. Detailed explanations of
PCA, one-hot encoding, and the rationale behind these
preprocessing steps are provided in the Supporting Informa-
tion (SL2) and the implementation methods of matminer for
featurization and two additional preprocessing steps are
detailed in the Methods section.

Initial Database. To train the surrogate model included in
the AL framework on the relationship between the 42 features
and EM™! values, the initial database generation was performed.
Thus, among the 23,857 MXenes, approximately 5% (1213
MXenes) had been chosen at random to determine their E™!
values using DFT calculations, the details of which are
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presented in the Methods section. The distribution of the
DFT-calculated E™! values for 1213 randomly selected
MXenes that comprise the initial database is shown in Figure
2. Here, E™! = 0 eV/atom indicates that the MXene is
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Figure 2. Distribution of energy above the convex hull (E™)
values of 1213 MXenes comprising the initial database; the green
zone represents the range of E™! values that satisfy the
thermodynamic stability criterion, while the red zone indicates
the range that does not meet the criterion, representing the
thermodynamically unstable region. The horizontal axis represents
the values of E™, and each interval of the histogram corresponds
to a range of 0.05 eV/atom of E™; the vertical axis represents the
number of MXenes within each range of E™ values. Among 1213
MXenes, only one MXene, Ti,CBr,, satisfied the thermodynamic
stability criterion; its structure is presented in the upper right
corner.

thermodynamically stable, implying that it will not decompose
to other competing stable phases. 0 eV/atom < B < 0.05
eV/atom indicates that the MXene is in a metastable state,
whereas E™! > 0.05 eV/atom implies that the MXene is
unstable. Out of the 1213 MXenes examined, only one MXene,
Ti,CBr,, was stable with E™! = 0 eV/atom, and none was
metastable. The EM! values of the remaining 1212 MXenes
ranged up to 1.73 eV/atom, and the average EMI of all the
1213 MXenes was high at 0.77 eV/atom. The workflow of

both featurization and initial database generation is presented
in the Supporting Information (SL.3).

AL Framework. The AL framework presented in this study
proceeds through the following steps and an overview of the
framework is shown in Figure 3:

1. Gaussian process regression (GPR), serving as the
surrogate model within the AL framework, learns the
relationship between the 42 features and E™! values
using the training database.

2. With the trained GPR, predictions are made for MXenes
whose E™! values have not yet been calculated using
DFT, providing both the predicted E™! values and
uncertainties of such predictions.

3. By utilizing these values in the expected improvement
(EI) utility function, 40 MXenes with hi?hest EI values
(ie, predicted to exhibit lower E™! values to a
significant extent) are chosen from the unlabeled pool.

4. DFT calculations are conducted on these 40 MXenes to
determine their precise E™! values.

S. The training database is then updated by adding these
40 MXenes for a subsequent iteration.

6. Steps 1 to S are repeated until no more than two
thermodynamically stable MXenes are found during
each of the three consecutive iterations.

The AL framework was initiated by training the GPR
surrogate model using the initially calculated 1213 MXenes. To
evaluate the performance of the AL framework, additional 40
MXenes were randomly selected in Step 3. For these 40
MXenes, the EM! values were also obtained through DFT
calculations, and the results were compared with the E™!
values of the 40 MXenes selected by the AL framework in each
iteration. Specifically, 40 MXenes selected using two different
methods (i.e., random and AL framework) were compared in
terms of their average EM™! values and the number of
thermodynamically stable MXenes with 0.00 eV/atom < E™!
< 0.05 among them. However, randomly selected MXenes
were used solely for comparative purposes and were not added
to the training database.

Active Learning Framework

Training Database I
Training
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Prediction & Uncertainty Measurement
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» —
Uncertainty: a(x)

Predictions on EM!!
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Figure 3. Workflow of the AL framework proposed in this study.
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As shown in the steps of the AL framework, the key
components are the surrogate model and the utility function,
with GPR and EI employed as the respective components.
First, GPR is a nonparametric, Bayesian regression method,
that uses a set of prior probability distributions to predict an
output for a given input, leveraging kernel functions, whose
details are given in Table 1, to determine relationship between

Table 1. Details About Hyperparameters of Gaussian
Process Regressor, Kernel Function, and EI Equation®

Gaussian process regressor
kernel = kernel, n_restarts_optimizer = 40, normalize_y = false,
random_state = 10
kernel
kernel = ConstantKernel (1.0, (1073,10%)) X Matern ([1.0] X 42,
[[107310%]] x 42, 1.5) + WhiteKernel (1.0, (1073,10%))

expected improvement

best
Bl = (1**(x) — u(x))®(z) + 6(x)p(z) where z = W
“bet(x): smallest target value in training database, y(x): mean of
predicted values, o(x): standard deviation of predicted values, ¢:
standard Gaussian distribution function, ®: standard cumulative
distribution function.

data points. The reasons for adopting GPR as the surrogate
model include: (1) for the utility function to be effective,
predictions and their associated uncertainties are required.
GPR is among the few ML algorithms capable of providing
both of them; (2) due to its kernel-based approach, GPR can
adeptly learn the nonlinear relationships between the 42

features and E™ as confirmed in performance comparison
tests with other ML models; the method and results of the
performance comparison test are detailed in the Supporting
Information (SL.4).

Second, EI, whose specific equation is given in Table I,
balances the use of “exploration” and “exploitation” strategies
to determine which MXene is promising for conducting DFT
calculations. To explain in more detail through the EI
equation, the first term is related to exploitation. The
exploitation strategy focuses on targeting MXenes predicted
to have low E™! values, and the (4'(x) — u(x)) part of the
first term helps facilitate this. (u***(x) — u(x)) indicates how
much lower the predicted E™" value (u(x)) of an MXene is
compared to that of the MXene with the smallest E™ value
within the training database (4"**(x)). The smaller the
predicted E™! value compared to y"(x), the larger the size
of the first term, resulting in a higher EI value. When p(x) is
greater than p**(x), it acts as a sort of penalty term, allowing
the EI values of MXenes where p(x) is close to 4°*(x) to be
larger. By multiplying (u*=*(x) — u(x)) and standard
cumulative distribution function (CDF) value of “z”, which
is the standardized value of ;°*(x) based on the y(x) and the
prediction uncertainty, the first term performs the role of
exploitation. The visual illustration of the first term can be
found in the Supporting Information (SLS), which also
describes the meaning of the standard CDF. Next, the second
term of the EI equation is related to exploration. The
exploration strategy focuses on targeting MXenes with high
uncertainty in predictions, based on the idea that many stable
MXenes might exist in unexplored chemical spaces, and to
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two AL iterations. The green zone represents thermodynamic stability or metastability, while the red zone indicates instability.
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Figure S. (a) Average energy above the convex hull values of 40 MXenes selected by the AL framework and the number of MXenes that
satisfy the thermodynamic stability criteria recorded for all 12 iterations and the same values computed from 40 randomly selected MXenes
(b) stacked histogram of energy above the convex hull values of 2173 MXenes comprising 1213 MXenes from the initial database, 480
MXenes selected by AL framework, and 480 randomly selected MXenes; the blue histogram corresponding to the 1213 MXenes from the
initial database was first plotted, with the gray histogram corresponding to the 480 randomly selected MXenes stacked on top of it, and the
green histogram corresponding to the 480 MXenes selected by the AL framework stacked on top of the blue and gray histograms.

learn more about the unknown relationship between the 42
features of MXenes and E™!. 6(x) represents the prediction
uncertainty for the E™! value of an MXene. A large o(x)
implies that the input feature exhibits different characteristics
compared to the data used in training, indicating that it is
worth investigating further. Consequently, the larger o(x), the
greater the second term becomes, resulting in a higher EI
value. By multiplying o(x) with the standard Gaussian
distribution function value of z, it fulfills the role of
exploration. The visual illustration of the second term can
also be found in the Supporting Information (SLS), where the
meaning of the standard Gaussian distribution function is
described. By summing the terms responsible for exploitation
and exploration, the EI value is obtained, allowing a balanced
consideration of both exploitation and exploration strategies. A
high EI value signifies not only a high probability that the
MXene has a low E™ value but also that it could be a MXene,
possessing different characteristics from those in the training
database, making it useful for finding stable MXenes that have
different compositions or stoichiometries compared to those in
the training data in unexplored chemical space where the
majority are unstable. The implementation methods for both
GPR surrogate model and EI utility function are described in
detail in the Methods section.

First Two Iterations of AL. The distributions of the E™!
values of the MXenes selected by the AL framework and those
chosen randomly for the first two AL iterations are presented
in Figure 4. In the first iteration (Figure 4a), of the 40 MXenes
selected by the AL framework, 29 (73%) met the
thermodynamic stability criteria (i.e., 0.00 €V/atom < EM!I <
0.05 eV/atom), of which 17 were stable with E™! = 0 eV/atom
and the remaining 12 were metastable. Furthermore, the
average E™! value for the 40 MXenes was low, at 0.04 eV/
atom. In contrast, none of the 40 MXenes selected at random
satisfied the stability condition, with an average E™! value of
0.82 eV/atom. In essence, while only one stable MXene was
found after conducting DFT calculations of the E™ values for

1213 MZXenes, and none was identified after randomly
selecting an additional 40, a single AL iteration enabled the
discovery of 29 stable MXenes with only 40 DFT calculations.
Subsequently, after adding the E™" values of the 40 MXenes
calculated in the first iteration to the training database, the
second iteration (Figure 4b) was conducted, identifying 17
thermodynamically stable MXenes. Eleven MXenes were stable
with EM! = 0 eV/atom; the remaining six MXenes were
metastable. Moreover, the average EM value for the 40
MXenes was low, at 0.06 eV/atom. However, that of 40
randomly selected MXenes was high at 0.82 eV/atom, and not
even one MXene met the thermodynamic stability criterion,
demonstrating the efficacy of the AL framework.

Overall Iterations of AL. The AL iterations were
terminated at the 12th iteration because the number of
thermodynamically stable MXenes found in three consecutive
iterations, including the 12th iteration, was two or fewer,
respectively, indicating that the thermodynamically stable
MXenes were likely depleted in the chemical space. Figure
5a depicts the average E™! value and number of MXenes
satisfying the thermodynamic stability criterion for the 40
MZXenes selected by the AL framework in each of the 12
iterations. For comparison, the figure also presents the same
quantities for 40 MXenes randomly selected at each iteration.
The average E™! values for the 40 MXenes selected by the AL
framework ranged low from 0.04 to 0.17 eV/atom during 12
iterations, whereas those randomly selected exhibited much
larger values ranging from 0.72 to 0.85 eV/atom. Additionally,
using only 480 DFT calculations, the AL framework identified
126 thermodynamically stable MXenes, whereas the random
selection method found only one with the same computational
cost. Particularly, the thermodynamically stable MXene
discovered in the fifth iteration through the random selection
method, V,CCl, with an E™! value of 0.007 eV/atom, was also
identified by the AL framework in the 12th iteration and was
included among the 126 thermodynamically stable MXenes,
demonstrating the AL framework’s precision in finding stable
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Figure 6. Constituents of the thermodynamically stable 126 MXenes; the red, yellow, and blue colorbars next to the transition metals, X site
atoms, and surface terminations indicate the number of MXenes among the 126 that contain each constituent. Darker colors signify a higher
number of MXenes containing that constituent, and the numbers displayed bottom right corner of each constituent represent the count of
MXenes with that constituent. If MXenes have two different transition metals or two different surface terminations, the count is incremented

by one for each constituent.

MXenes across an extensive chemical space. Of these 126
MXenes, 89 MXenes had not been evaluated for their stability
in previous studies, indicating the efficacy of the AL framework
in finding stable MXenes; the access method for the B values
of the 126 MXenes is summarized in the Supporting
Information (SL6). Furthermore, Figure Sb represents the
stacked histogram of the EM! values of 2173 MXenes, obtained
after 12 AL iterations. It is confirmed once again that a
significant number of the 480 MXenes randomly selected
during the 12 AL iterations and the 1213 MXenes from the
initial database have high E™" values, forming a nearly normal
distribution with respect to their average value (0.77 eV/
atom). In contrast, the E™ values of the 480 MXenes selected
by the AL framework are all clustered at lower values,
indicating the usefulness of the AL framework in identifying
stable MXenes. The access method for the E™! values of the
2173 MZXenes is described in the Supporting Information
(SL.7).

Composition-Wise and Stoichiometric-Wise Analysis.
The frequency of the constituents of the 126 MXenes is
summarized in Figure 6. First, 94% of the 126 MXenes had
Group-3 and/or Group-4 transition metals, while 77% of them
were carbides having C in the X site. These results are
consistent with those reported previously. For example, Li et
al.*® listed successfully synthesized MXenes, noting a high
prevalence of Group-3 and Group-4 transition metal-based
MXenes at 57%. Furthermore, approximately 84% of them
were carbides. This confirms that the 126 MXenes exhibit a
chemical composition trend similar to that of the MXenes
successfully synthesized in previous studies. Next, as for the
surface terminations of the 126 MZXenes, elements from
Group-17 (i.e., halogen atoms) were predominantly observed.
This can be understood in terms of the relative electro-
negativity of the transition metals with the surface
terminations. The interaction between the transition metal of
MXene and the surface termination plays a crucial role in
stability, depending on the electronegativity difference between
them.” A large electronegativity difference enables a strong
interaction, and the bond between the halogen surface
termination and Group-3 or Group-4 transition metals (ie.,
early transition metals) maximizes this difference. Moreover,
Wyatt et al."” obtained the bond energies of various transition
metals and surface terminations of MXenes, and they identified
that the bond energies of early transition metals and surface
terminations with halogen elements, particularly F and Cl,
were higher than those of other bonds. This implies that the
interaction between them is strong and requires a significant

amount of energy for decomposition, indicating high stability.
In summary, the 126 MXenes identified through the AL
framework exhibited a chemical composition trend similar to
that of the successfully synthesized MXenes, particularly in the
presence of Group-3 and Group-4 transition metals and C at
the X site. Additionally, their stability could be theoretically
explained by the large electronegativity difference and strong
bond energy between the halogen surface terminations and
Group-3 and Group-4 transition metals.

Across the four different stoichiometries considered in this
study, 126 MXenes exhibited a nearly even distribution; the
frequencies of the stoichiometries are listed in Table 2. First,

Table 2. Number of MXenes for Each of Four Different
Stoichiometries

total thermodynamically stable MXenes
126

iso-stoichiometric MXenes nonstoichiometric MXenes

M,XT, M'M?XT,  MXT!'T>  M'MXT'T?
25 26 37 38

there were 25 iso-stoichiometric MXenes, all of which have
been previously reported to be thermodynamically stable by
first-principles ~ calculations.””*'~*  Also, iso-stoichiometric
MXenes having surface termlnatlons vnth halogen elements
have been successfully synthesized,"*** suggesting the higher
probability of their synthesis in future studies than that of other
stoichiometries. Second, there were 26 MZXenes with two
different transition metals (M'M?XT,), and only one of them,
SCYCF,, was previously known for its stability."” Because
MXenes with two different transition metals have been
successfully synthesized (although they did not have halogen
surface termination)*®™° and because the methods for
terminating MXenes with halogen atoms have been clarified
in previous studies, the 26 MXenes with two different
transition metals can also be considered to have high
synthesizability. Finally, 75 MXenes with two different surface
terminations (M,XT'T?) and distinct transition metals and
surface terminations (M'M?XT'T?) were identified, among
which the thermodynamic stabilities of only 11 MXenes have
been previously confirmed through first-principles calcula-
tions.” "> While extensively studied through various computa-
tional methods,”> > these MXenes have not yet been
successfully synthesized, due to the complexities involved in
obtaining different surface terminations on their top and
bottom surfaces. However, syntheses of other 2D materials,
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such as MoSSe,”® WSSe,”” Janus graphene with halogen
surface termination on the top and oxygen-functional groups at
the bottom,*® and Janus graphene oxide with Pt on one surface
and TiO, on the other,”” have been reported to be successful,
despite the asymmetry of the top and bottom surfaces. Hence,
additional studies are required to utilize these synthesis
methods for MXenes with stoichiometries of M,XT'T* and
M'M?XT'T% In conclusion, while previous computational
studies have often focused on MXenes with a single
stoichiometry, primarily iso-stoichiometric MZXenes, this
study used the AL framework to consider various stoichiome-
tries at the same time. This demonstrates the ability of the AL
framework to account for not only the compositional but also
the stoichiometric diversity of MXenes, a capability that can
facilitate the discovery of stable MXenes with asymmetric
structures.

The great quantity and diversity of thermodynamically stable
MZXenes identified in this study can be attributed to the
advantages of AL; its ability to consider the uncertainty of
predictions and to operate iteratively. The contributions of
each advantage of AL can be summarized in two key points,
and the superiority of the AL method can also be
demonstrated through a comparison with the previous ML
study. First, the ability to account for uncertainty enabled the
identification of 126 thermodynamically stable MXenes, even
though there was only one stable MXene in the initial database.
El, the utility function used in this study, considers not only
the MXenes predicted to have low E™! values but also those
with high uncertainty in their predictions as worth
investigating. Thus, EI could select stable MXenes with various
compositions and stoichiometries that showed different
characteristics from MXenes used in the training. This enabled
the discovery of stable MXenes that were stoichiometrically
and compositionally different from the Ti,CBr,, the only stable
MXene in the initial training database. For comparison, the
previous ML study” that screened same MXene candidates
regarding thermodynamic stability did not consider uncertain-
ties of predictions and, therefore, could only identify MXenes
with characteristics similar to stable 2D materials in the
training database. In particular, in the case of nonstoichio-
metric MXenes, only 6 were discovered; while this study was
able to find 101 nonstoichiometric MXenes, including those 6.
Moreover, the iterative nature of AL enabled the training
database to be continuously updated with additionally
calculated MXenes, leading to the discovery of more than 10
stable MXenes in second, third, and fourth iterations. In
contrast, the previous work® employed ML to perform only a
single screening, identifying 45 stable MXenes, with an Ehul
value threshold of 0.1 eV/atom. Among them, MXenes with
EM! values below 0.05 eV/atom were all identified in this study
as well. Overall, the use of AL enabled a practical exploration
on the extensive chemical space of MXenes by accounting for
prediction uncertainty and allowed for a more thorough
investigation through iterative updates to the training data.

CONCLUSIONS

The AL framework presented in this study was composed of a
GPR surrogate model and an EI utility function. The fast
learning and prediction capabilities of GPR combined with the
discerning power of the EI utility function enabled the
consideration of a wide range of stoichiometrically and
compositionally diverse MXenes, thus leading to the accurate
and expeditious identification of thermodynamically stable

MXenes. A total of 126 thermodynamically stable MXenes
were discovered through 12 AL iterations, which involved 480
DFT calculations. Furthermore, the average E™! values of the
40 MXenes selected by the AL framework in each iteration
were low, ranging from 0.04 to 0.17 eV/atom. In contrast, out
of the 480 MXenes randomly selected during the 12 AL
iterations and 1213 MZXenes randomly chosen for the initial
database, only two MXenes were found to be thermodynami-
cally stable. Particularly, the average E™! values of the 40
randomly selected MXenes in each iteration were high, ranging
from 0.72 to 0.85 eV/atom. This demonstrates that
thermodynamically stable MXenes are extremely scarce within
the explored chemical space of this study, and attempting to
explore this extensive chemical space solely through DFT
calculations would be highly inefficient. However, the AL
framework effectively minimizes the number of DFT
calculations while maximizing the discovery of thermodynami-
cally stable MXenes. In conclusion, the present study
demonstrated the utility of employing an AL framework to
search for materials with targeted properties within an
extensive chemical space by focusing the effort on candidates
with higher priority. This approach extends beyond screening
MXenes based on thermodynamic properties, encompassing
screening for various kinetic properties, such as ionic or
thermal conductivity. Moreover, it can be applied to more
diverse types of MXenes, including those with different atomic
stackings, e.g., ABA stacking, and high entropy MXenes with
extensive chemical variability. Regarding further future
research directions, there are two main areas for improvement
in the AL framework proposed in this study. First, the
surrogate model lacks explainability regarding which features it
primarily leverages to predict the E™! values of MXene.
Ensuring the explainability of predictions would provide
valuable insights into the relationship between input features
and E™! Therefore, it may be beneficial to consider using
explainable AI techniques, including Shapley Additive
Explanations and attention weight visualization of transformer
models, as demonstrated in previous studies.””*”®" Second,
additional screening methods will be necessary depending on
the applications of the stable MXenes. For example, if the goal
is to identify MXene catalyst candidates, the proposed
framework can be initially used to quickly find stable MXenes,
after which DFT calculations should be employed to verify
catalyst properties. However, DFT calculations have limita-
tions in observing the spatiotemporal evolution of active sites
in catalyst. Therefore, kinetic analysis using kinetic Monte
Carlo simulations, as done in previous computational
studies,”> " will be necessary. These additional screening
steps would enable the proposal of MXene catalysts that are
both stable and highly effective.

METHODS

Data Processing and AL. The featurization of MXene was
conducted using five featurizers from matminer: ElementProperty,
ValenceOrbital, Stoichiometry, IonProperty, and TMetalFraction,
resulting in a total of 149 features. To reduce the dimensionality of
these 149 features to 15, PCA was applied using the PCA function
from the “decomposition” module in Scikit-Learn package. The final
42 features were formed by concatenating 27 features created through
one-hot encoding, which was implemented using a custom automated
code written in Python. The GPR surrogate model that constitutes
the AL framework was developed using the GaussianProcessRegressor
function from the “gaussian_process” module in Scikit-Learn, with a
kernel combining RBF, ConstantKernel, and WhiteKernel from the
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same module. The EI utility function was implemented in Python by
directly expressing the mathematical formula using NumPy and SciPy
packages.

DFT Calculations. The E™! values of MXenes that comprise the
initial database and are chosen by the AL framework were generated
via DFT calculations in conjunction with the Materials Project (MP)
database® interfaced with the Python Materials Genomics
(pymatgen) code.’® DFT calculations’” were performed as
implemented in Vienna Ab initio Simulation Package.®® The core—
valence electron interaction was treated by the projector-augmented
wave potential,””’° and the plane-wave basis set with a cutoff energy
of 520 eV was used. The electron exchange—correlation functional of
the generalized gradient approximation formulated by Perdew—
Burke—Ernzerhof was adopted.”’ The Hubbard U correction was
employed for the compounds containing transition metals with
delocalized d-orbital electrons, and the U values were chosen to
closely match the experimental formation energy. The U values were
taken from the literature.”* The k-points mesh was constructed with
the pymatgen code®® with a density of 1500/reciprocal atom. The
phase diagram was calculated using the DFT-calculated energies of
the relevant compounds obtained from the MP database.’®
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